1,917 research outputs found

    Energy-Momentum Complex in M\o ller's Tetrad Theory of Gravitation

    Full text link
    M\o ller's Tetrad Theory of Gravitation is examined with regard to the energy-momentum complex. The energy-momentum complex as well as the superpotential associated with M\o ller's theory are derived. M\o ller's field equations are solved in the case of spherical symmetry. Two different solutions, giving rise to the same metric, are obtained. The energy associated with one solution is found to be twice the energy associated with the other. Some suggestions to get out of this inconsistency are discussed at the end of the paper.Comment: LaTeX2e with AMS-LaTeX 1.2, 13 page

    Cardiac evaluation of candidates for kidney transplantation: value of exercise radionuclide angiocardiography

    Get PDF
    In view of the high incidence and mortality of coronary artery disease (CAD) in patients with kidney transplantation, a systematic cardiac evaluation was prospectively performed in 103 uraemic patients eligible for transplantation. After clinical examination, 28 patients with symptoms of CAD or diabetes mellitus were referred directly for coronary angiography, whereas the remaining 75 patients had rest and exercise radionuclide angiocardiography for evaluation of possible asymptomatic CAD. Among them, left ventricular ejection fraction was below 40% at rest or fell during exercise by at least 5 EF% in 12 patients; coronary angiography in nine showed CAD in four and hypertensive heart disease in five. In the remaining 63 (of 75) patients without severe resting left ventricular dysfunction or exercise ischaemia, the follow-up of 28 ±7 months revealed no clinical manifestation of CAD. Overall incidence of CAD in symptomatic and asymptomatic patients during a follow-up of 27 months after cardiac evaluation was 20 and 25% in non-diabetic and diabetic candidates for kidney transplantation, respectively (P = n.s.). Thus, clinical examination combined with exercise radionuclide angiocardiography in patients without signs or symptoms of heart disease had a high predictive accuracy for presence or absence of late manifestations of CAD. Exercise radionuclide angiocardiography is therefore a useful method for screening kidney transplantation candidates for asymptomatic CA

    Profile and width of rough interfaces

    Full text link
    In the context of Landau theory and its field theoretical refinements, interfaces between coexisting phases are described by intrinsic profiles. These intrinsic interface profiles, however, are neither directly accessible by experiment nor by computer simulation as they are broadened by long-wavelength capillary waves. In this paper we study the separation of the small scale intrinsic structure from the large scale capillary wave fluctuations in the Monte Carlo simulated three-dimensional Ising model. To this purpose, a blocking procedure is applied, using the block size as a variable cutoff, and a translationally invariant method to determine the interface position of strongly fluctuating profiles on small length scales is introduced. While the capillary wave picture is confirmed on large length scales and its limit of validity is estimated, an intrinsic regime is, contrary to expectations, not observed.Comment: 18 pages, 4 Postscript figures, LaTeX2e, formulation of sec.3.2 improved, 1 reference adde

    Localization Properties of Two Interacting Electrons in a Disordered Quasi One-Dimensional Potential

    Full text link
    We study the transport properties of two electrons in a quasi one-dimensional disordered wire. The electrons are subject to both, a disorder potential and a short range two-body interaction. Using the approach developed by Iida et al. [ Ann. Phys. (N.Y.) 200 (1990) 219 ], the supersymmetry technique, and a suitable truncation of Hilbert space, we work out the two-point correlation function in the framework of a non-linear sigma model. We study the loop corrections to arbitrary order. We obtain a remarkably simple and physically transparent expression for the change of the localization length caused by the two-body interaction.Comment: 10 page

    New Fermions at e+^+e^- Colliders: I. Production and Decay

    Full text link
    We analyze the production in e+ee^+e^- collisions of new heavy fermions stemming from extensions of the Standard Model. We write down the most general expression for the production of two heavy fermions and their subsequent decays, allowing for the polarization of the e+^+e^- initial state and taking into account the final polarization of the fermions. We then discuss the various decay modes including cascade and three body decays, and the production mechanisms, both pair production and single production in association with ordinary fermions.Comment: 21 pages (no figures), Preprint UdeM-LPN-TH-93-15

    Computed tomography-osteoabsorptiometry for assessing the density distribution of subchondral bone as a measure of long-term mechanical adaptation in individual joints

    Get PDF
    To estimate subchondral mineralisation patterns which represent the long-term loading history of individual joints, a method has been developed employing computed tomography (CT) which permits repeated examination of living joints. The method was tested on 5 knee, 3 sacroiliac, 3 ankle and 5 shoulder joints and then investigated with X-ray densitometry. A CT absorptiometric presentation and maps of the area distribution of the subchondral bone density areas were derived using an image analyser. Comparison of the results from both X-ray densitometry and CT-absorptiometry revealed almost identical pictures of distribution of the subchondral bone density. The method may be used to examine subchondral mineralisation as a measure of the mechanical adaptability of joints in the living subject

    Review of the k-Body Embedded Ensembles of Gaussian Random Matrices

    Full text link
    The embedded ensembles were introduced by Mon and French as physically more plausible stochastic models of many--body systems governed by one--and two--body interactions than provided by standard random--matrix theory. We review several approaches aimed at determining the spectral density, the spectral fluctuation properties, and the ergodic properties of these ensembles: moments methods, numerical simulations, the replica trick, the eigenvector decomposition of the matrix of second moments and supersymmetry, the binary correlation approximation, and the study of correlations between matrix elements.Comment: Final version. 29 pages, 4 ps figures, uses iopart.st

    Finite-size behaviour of the microcanonical specific heat

    Full text link
    For models which exhibit a continuous phase transition in the thermodynamic limit a numerical study of small systems reveals a non-monotonic behaviour of the microcanonical specific heat as a function of the system size. This is in contrast to a treatment in the canonical ensemble where the maximum of the specific heat increases monotonically with the size of the system. A phenomenological theory is developed which permits to describe this peculiar behaviour of the microcanonical specific heat and allows in principle the determination of microcanonical critical exponents.Comment: 15 pages, 7 figures, submitted to J. Phys.

    Quark-hadron-duality in the charmonium and upsilon system

    Get PDF
    In this work we discuss the practical and conceptual issues related to quark-hadron-duality in heavy-heavy systems. Recent measurements in the charmonium region allow a direct test of quark-hadron-duality. We present a formula for non-resonant background production in e^+ e^- \to D{\bar D} and extract the resonance parameters of the \psi(3S)-\psi(6S). The obtained results are used to investigate the upsilon energy range.Comment: 21 pages, 3 figures, references adde
    corecore